Neural Network Design for Chaos Synchronization
نویسندگان
چکیده
This chapter presents an application of neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are recurrent neural networks and inverse optimal control for nonlinear systems. On the basis of the last technique, chaos is first produced by a stable recurrent neural network; an adaptive recurrent neural controller is then developed for chaos synchronization.
منابع مشابه
Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملHybrid Concepts of the Control and Anti-Control of Flexible Joint Manipulator
This paper presents a Gaussian radial basis function neural network based on sliding mode control for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, designed controller is developed for tip angular position control of a flexible joint manipulator. The adaptation laws of designed controller are obtained based on sliding m...
متن کاملObserver-Based Synchronization for a Class of Unknown Chaos Systems with Adaptive Fuzzy-Neural Network
This investigation applies the adaptive fuzzy-neural observer (AFNO) to synchronize a class of unknown chaotic systems via scalar transmitting signal only. The proposed method can be used in synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur'e system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network (FNN) i...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کامل